Tuning quantum electron and phonon transport in 2D materials by strain engineering: a Green function based study

©https://www.dpg-physik.de/
©https://www.dpg-physik.de/veroeffentlichungen/aktuell/2022/stellenausschreibung_koordination/@@images/image/teaserbild

DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) | event contribution
March 21, 2017 | Dresden, Germany

In the present work, using a DFTB method in combination with Green’s function approaches, we address strain engineering of the transport setup (contact-device(scattering)-contact regions) on the electron and phonon transport properties of 2D materials, focusing on hBN, phosphorene, and MoS2 monolayer. Considering unstretched contact regions, we show that the electronic bandgap displays an anomalous behavior and the thermal conductance continuously decreases after increasing the strain level in the scattering region. However, when the whole system (contact and device regions) is homogeneously strained, the bandgap for hBN and MoS2 monolayers decreases, while for phosphorene first increases and then tends to zero with larger strain levels. Additionally, the thermal conductance shows a specific strain dependence for each of the studied 2D materials.


Authors

Tuning quantum electron and phonon transport in 2D materials by strain engineering: a Green function based study

©https://www.dpg-physik.de/
©https://www.dpg-physik.de/veroeffentlichungen/aktuell/2022/stellenausschreibung_koordination/@@images/image/teaserbild

DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM) | event contribution
March 21, 2017 | Dresden, Germany

In the present work, using a DFTB method in combination with Green’s function approaches, we address strain engineering of the transport setup (contact-device(scattering)-contact regions) on the electron and phonon transport properties of 2D materials, focusing on hBN, phosphorene, and MoS2 monolayer. Considering unstretched contact regions, we show that the electronic bandgap displays an anomalous behavior and the thermal conductance continuously decreases after increasing the strain level in the scattering region. However, when the whole system (contact and device regions) is homogeneously strained, the bandgap for hBN and MoS2 monolayers decreases, while for phosphorene first increases and then tends to zero with larger strain levels. Additionally, the thermal conductance shows a specific strain dependence for each of the studied 2D materials.


Authors