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Abstract 

Formation of regularly structured silica valves of various diatom species is a particularly fascinating phenomenon 
in biomineralization. Intensive investigations have been devoted to elucidate the formation mechanisms of diatom 
valve structures. Phase-separation of species-specific organic molecules has been proposed to be involved in pat-
tern formation, where the evolving organic molecule structures serve as template for silica formation. In the present 
work, using a continuum approach, we investigate the conditions under which silica structures of high regularity can 
develop within a phase separation model. In relation to previously reported in vitro experiments of silica formation, 
which revealed the important role of phosphate ions in the self-assembly of organic molecules, we propose a model 
where phase separation is coupled with a chemical reaction. We analyze the impact of the reaction of phosphate ions 
with organic molecules on the appearing morphology of the organic template. Two- and three-dimensional simula-
tions of the development of regular stationary patterns are presented. The influence of a confined geometry and an 
interaction of organic molecules with the walls on pattern formation is also addressed. We expect that our approach 
will be relevant for experimental studies aiming at inducing structure formation under controlled in vitro conditions.
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Introduction
The formation of various beautiful silica structures of dia-
toms is a very fascinating example of biomineralization. 
In recent years, considerable progress has been made in 
elucidating the chemical and biological processes, which 
are involved in the silica morphogenesis of diatom valves 
(cf. for example [1–5]). Summaries of very recent find-
ings have been given in [6, 7]. So far, only relatively few 
works have dealt with the very challenging theoretical 
modeling of the morphogenesis of diatom valves [8–13]. 
Early models were based on diffusion-limited aggregation 

of silica nanoparticles, which are imported into the silica 
deposition vesicle (SDV) at its leading edge [9, 11]. Cor-
responding computer simulations were able to describe 
the formation of the radial rib structure of valves. On the 
basis of diffusion-reaction mechanisms, the formation of 
various nano-sized pore patterns within larger pores of 
silica valves has also been addressed in [12, 13]. A spe-
cial computer evolution model of the morphogenesis of 
raphid pennate diatoms was presented in [8]. Another 
modeling approach was based on the hypothesis that sil-
ica formation is guided by a template, which is formed by 
the self-assembly of organic components [1, 3, 4, 10, 14]. 
In this context, phase separation of organic molecules 
within the SDV was proposed as one formation mecha-
nism of the patterned templates [14]. In a correspond-
ing theoretical study [10], numerous two-dimensional 
patterns were obtained, which showed great similar-
ity with observed valve structures. In those computer 
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simulations, phase separation was influenced by an addi-
tional local field arising from the pre-existing silica cos-
tae within the base layer. Depending on the choice of this 
regular pre-patterning field, different highly symmetric 
valve structures could be achieved.

Extensive experimental investigations have revealed 
that species-specific organic molecules are involved in 
the formation of the biosilica structures in diatoms, for 
example long chain polyamines, silaffins and silacidins [4, 
7]. Due to the large complexity of in vivo studies, numer-
ous in vitro experiments of the silification of aggregates 
of organic molecules have been performed to elucidate 
the mechanisms of biosilica formation [2, 15, 16]. It was 
found that the amount, size, and form of silica precipi-
tates sensitively depend on the molecular structure of 
the synthesized polyamines. Further, the influence of 
phosphate ions on the precipitation was analyzed. In par-
ticular, the analysis in [2] showed that silica precipitation 
occurred beyond a certain threshold pH which depends 
on the phosphate concentration. With increasing phos-
phate concentration, the diameter of spherical aggregates 
of the organic molecules also increased. Those aggregates 
served as template for the silica formation after adding 
silicic acid molecules to the solution. The diameter of 
the arising silica spheres was about 100 to 600 nm [2]. 
Interestingly, the size of the polyamine aggregates could 
be controlled also at fixed polyamine/phosphate ratio by 
changing the pH value. In [15], besides hollow spheres 
of about 20 to 200 nm size, filament-like silica structures 
were also observed. The described silification of spherical 
organic templates does not explain, however, the forma-
tion of the various pore structures of diatom valves. To 
obtain a porous silica structure, an appropriate mecha-
nism was proposed in [2]. Instead of monosilicic acid as 
silicon source, a sol of stabilized silica nanoparticles was 
used for the formation of silica structures. The nanopar-
ticles arranged around the organic aggregates, so that a 
network-like silica morphology was formed. The long-
term goal of in  vitro approaches would be the creation 
of artificial SDVs, where biosilica formation can be con-
trolled by varying key parameters such as the pH and the 
concentration of the different participating components 
(organic and inorganic). Achieving this goal would be not 
only of great relevance for understanding the underly-
ing mechanisms leading to biosilicification in vivo, but it 
would also trigger far-reaching nanotechnological appli-
cations of diatoms [17].

Inspired by the previously described in  vitro experi-
ments and by the proposals in [2, 14], we will investi-
gate in this work phase separation of organic molecules 
as one possible mechanism to form organic templates 
for the formation of silica structures. To avoid the per-
manent coarsening of phase regions in conventional 

phase separation, we propose here a model where the 
phase separation is coupled with a chemical reaction 
[18], an approach which can be justified on the basis 
of the in  vitro experiments of silica precipitation. In 
particular, we focus on the role of phosphate anions in 
the self-assembly of long-chain polyamines (LCPAs). 
Besides the experimental studies mentioned above, the 
importance of phosphate ions is further highlighted by 
experiments on silaffins, which showed that silaffin 1-A 
(in contrast to natSil-1A) was not able to promote silica 
precipitation in the absence of phosphates [19]. This 
was traced back to the absence in silaffin 1-A of phos-
phorylation of the hydroxyamino acids of the peptide 
backbone. The choice of LCPAs as a reference organic 
component is motivated by their demonstrated influ-
ence on silica aggregation in  vitro [20–23] as well as 
by their broad dispersion into the silica phase, shown 
recently in [24]. The latter fact suggests their relevance 
for the formation of the organic–inorganic interface 
under in vivo conditions.

In view of these findings, we suggest that the reaction 
of organic molecules with phosphate ions has an impor-
tant impact on the phase separation of the organic com-
ponent and, therefore, it should be taken into account in 
the theoretical modeling of this process. Our aim was to 
find a mechanism how regular stationary phase patterns 
develop.

The paper is outlined as follows. First, we present our 
mathematical model of the phase separation of organic 
molecules coupled to a chemical reaction. Then, by 
means of a linear stability analysis of the model equa-
tions, we show under which conditions spinodal decom-
position of a uniform state occurs. As a result of our 
numerical simulations, various stationary phase patterns 
of high regularity are obtained and the impact of different 
model parameters on the emerging patterns is analyzed.

Model
Our theoretical investigation of the aggregation of 
organic molecules is based on the following approach. To 
study the role of phosphate ions in the aggregation pro-
cess, we consider the simple generic reaction:

where component A corresponds to organic mol-
ecules which are unable to phase separate. We hypoth-
esize that by binding of phosphate ions (component 
B) to those organic molecules, the organic component 
C is formed,which exhibits a higher degree of phos-
phorylation so that phase separation of component C 
becomes possible due to its reduced charge compared to 

(1)A+ B ⇋ C,
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component A. More explicitly, the above reaction may 
adopt the following form :

To describe the phase separation process, we use the 
well-known Cahn-Hilliard model [10, 25, 26]. We start 
from the Gibbs energy functional:

where φ(�r) is the volume fraction of the phase separat-
ing component and g(φ) is the Gibbs energy density of 
mixing. The gradient energy coefficient κ will be assumed 
to be constant [27]. Together with the constraint 
1
V

∫

dVφ(�r) = φ̄ and the continuity equation

with M being the mobility and µ = δG/δφ the chemi-
cal potential, the evolution equation for the phase field 
φ(�r, t) is obtained as [10, 26]:

For simplicity, the mobility was approximated as a con-
stant. For the Gibbs energy density, we adopted a generic 
asymmetric double well potential according to the Flory-
Huggins model:

where g0 is a prefactor, N  is the degree of polymeriza-
tion, and χ is the Flory-Huggins interaction parameter 
[27]. Spinodal decomposition occurs for volume frac-
tions where g ′′(φ) < 0 . In the following calculations, 
we used the parameters N = 10 and χ = 1.3 . For this 
example, spinodal decomposition takes place for volume 
fractions 0.066 < φ < 0.588 . Introducing the length unit 
l = √

κ/g0 and time unit τ = l2/(Mg0) , Eq. 4 can be writ-
ten in dimensionless form as:

where t̂ = t/τ , ∇̂ = l∇ , and ĝ = g/g0 . The unit length is 
of the order of magnitude of the interface width between 
the separated phases (cf. for example Fig. 3 below). The 
evolution of the concentrations of components A and B is 
described by the following reaction–diffusion equations 
[18]:

H2PO
−
4 + C10H27N

+n
6 ↔ [H2PO

−
4 + C10H27N6]+(n−1).

(2)G[φ] =
∫

dV

[

g(φ)+ 1

2
κ(∇φ)2

]

,

(3)
∂φ

∂t
= ∇ ·M∇µ,

(4)
∂φ

∂t
= ∇ ·M∇

(

g ′(φ)− κ∇2φ

)

.

(5)
g(φ) = g0

[

1

N
φ ln φ + (1− φ) ln(1− φ)

+χφ(1− φ)],

(6)
∂φ

∂ t̂
= ∇̂2

(

ĝ ′(φ)− ∇̂2φ

)

,

where cA , cB , and cC are the concentrations (with dimen-
sion m−3 ) of the corresponding components. The reac-
tion velocity of components A and B is described by the 
coefficient α and the backward reaction (dissociation of 
component C) by the coefficient β . The diffusion coeffi-
cients DA and DB generally depend on the concentrations 
cA and cB , on the volume fraction φ  [28, 29], and on the 
charge state of the polymer [30]. In fact, variations over 
several orders of magnitude can be found. Due to the 
lack of specific information on the studied polyamine-
phosphate ion-water system, we will assume in the fol-
lowing that these kinetic coefficients are constants in a 
first analysis. A rough order-of-magnitude estimation of 
the reactions rates α and β is provided in the Supplemen-
tary Material. Since we decided to describe phase sepa-
ration of component C in Eq.  6 in terms of the volume 
fraction of component C, Eqs. 7 and 8 have to be properly 
adapted. The volume fraction of C is related to the con-
centration by φ = �CcC with �C as the molecular vol-
ume of component C. Thus, Eqs. 7 and 8 are multiplied 
by �C and by using the above length and time units, one 
obtains:

with ĉA = �CcA , ĉB = �CcB , D̂A = DAτ/l
2 , 

D̂B = DBτ/l
2 , α̂ = ατ/�C , and β̂ = βτ . Note that con-

centrations cA and cB are scaled by the molecular vol-
ume of component C. Adding the reaction terms in Eq. 6 
finally yields:

For the sake of brevity, we will omit the roof on the scaled 
variables in the following.

It should be noted that the chosen expression for the 
Gibbs energy in Eq. 5 is valid for a polymer-solvent sys-
tem. Actually, an interaction of component C with com-
ponents A and B should be also taken into account (cf. 
for example [27]). However, to simplify the situation in 
this first analysis, we will omit this interaction. In the 
limit of a small dissociation constant β , the volume frac-
tions of components A and B will be small compared to 

(7)
∂cA

∂t
= ∇ · DA∇cA − αcAcB + βcC,

(8)
∂cB

∂t
= ∇ · DB∇cB − αcAcB + βcC,

(9)
∂ ĉA

∂ t̂
= ∇̂ · D̂A∇̂2ĉA − α̂ĉA ĉB + β̂φ

(10)
∂ ĉB

∂ t̂
= ∇̂ · D̂B∇̂2ĉB − α̂ĉA ĉB + β̂φ

(11)
∂φ

∂ t̂
= ∇̂2

(

ĝ ′(φ)− ∇̂2φ

)

+ α̂ĉA ĉB − β̂φ.
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that of component C, in particular to that of component 
B, since the phosphate ions have a much smaller molecu-
lar volume than the organic component.

We further consider here the case that the reaction and 
diffusion processes are fast compared to the phase sepa-
ration. Then, starting from an initial condition cA = cA,0 , 
cB = cB,0 and φ = 0 , a reaction equilibrium αcA,ecB,e = βφe 
will be quickly established. Together with the particle con-
servation laws cA,0 = cA,e + φe and cB,0 = cB,e + φe , the 
equilibrium concentration of component C is obtained as:

Phase separation will not occur if this equilibrium con-
centration is outside the spinodal region of the Gibbs 
energy ( g ′′(φ) < 0 ). The system of nonlinear partial dif-
ferential equations  9–11, which describe the coupled 
evolution of the three components, has been solved 
numerically. In case of periodic boundary conditions, we 
mainly used an efficient semi-implicit Fourier-spectral 
method [31], which we implemented in the software 
MATLAB R2019b. For comparison and for simulations 
within a confined geometry, we applied also the finite ele-
ment software Comsol Multiphysics 5.2 [32]. Our model 
of the phase separation is characterized by the four model 
parameters DA , DB , α and β , as well as by the initial con-
centrations cA,0 and cB,0 . In view of the great number of 
parameters, we analyze in a first step, under which con-
ditions a uniform system becomes unstable and spinodal 
decomposition can occur.

Stability analysis
We start from a spatially uniform system with all concen-
trations at their equilibrium values, i.e. αcA,ecB,e = βφe , 
and analyze whether small fluctuations will unstably grow 
or decay. Inserting cA = cA,e + δcA , cB = cB,e + δcB , and 
φ = φe + δφ into Eqs. 9 to 11 and expanding up to linear 
order in the fluctuations, we obtain:

(12)

φe =
1

2

�

cA,0 + cB,0 +
β

α

−
�

�

cA,0 + cB,0 +
β

α

�2

− 4cA,0cB,0



.

(13)
∂δcA

∂t
= DA∇2δcA

− α(δcAcBe + cAeδcB)+ βδφ

(14)
∂δcB

∂t
= DB∇2δcB

− α(δcAcBe + cAeδcB)+ βδφ

Inserting the ansatz δcA = aA exp (ωt) exp (iqx) , 
δcB = aB exp (ωt) exp (iqx) , δφ = aφ exp (ωt) exp (iqx) 
into Eqs.  13–15 yields the following equations for the 
amplitudes which, for brevity, are represented in matrix 
form:

This linear system of homogeneous equations has a solu-
tion for vanishing of the determinant of the coefficient 
matrix. This condition leads to a cubic equation for the 
frequency as a function of the wave vector. In the con-
sidered parameter region, the three solutions of the 
equation are real. Two of them are negative at all wave 
vectors. One solution, which exhibits also positive values, 
is referred to as the dispersion relation ω(q) . Spinodal 
decomposition of component C will occur for grow-
ing fluctuations, i.e. for q-values for which ω(q) > 0 . In 
Fig. 1, examples of the dispersion relation are shown for 
different dissociation constants β . In general, the fre-
quency becomes negative above a critical wave vector 
q0 with ω(q0) = 0 . Thus, fluctuations with wavelengths 
shorter than �0 = 2π/q0 will decay in time. The wave-
length of the fastest growing Fourier mode is given by 
the maximum of ω(q) at the wave vector qmax . The cor-
responding wavelength �max = 2π/qmax determines the 
characteristic size of the initially emerging phase regions.

In the limit of vanishing dissociation ( β = 0 ), the fre-
quency ω(q) is positive for all wave vectors q < q0 . 
Thus, also fluctuations with very long–wavelengths will 
grow. As a consequence, phase regions will permanently 
coarsen in the nonlinear growth regime, which hinders 
the desired formation of regular stationary phase pat-
terns. Interestingly, with increasing dissociation constant 
β , the frequency within a certain region at small wave 
vectors becomes negative. This means that the corre-
sponding long-wavelength fluctuations are suppressed. 
As it will be shown below, the existence of such a sup-
pressed wave vector region is of great importance for the 
establishment of regular stationary phase patterns, since 
it inhibits the permanent coarsening of phase regions. 
With further increase of the dissociation constant, the 
frequency ω(q) becomes negative at all wave vectors and, 

(15)
∂δφ

∂t
= ∇2

(

g ′′(φe)δφ −∇2δφ

)

+ α(δcAcBe + cAeδcB)− βδφ.

(16)





mA αcAe −β

αcBe mB −β

−αcBe −αcAe mφ









aA
aB
aφ



 = 0

mA(q) = ω + DAq
2 + αcBe

mB(q) = ω + DBq
2 + αcAe

mφ(q) = ω + q2
�

g ′′(φe)+ q2
�

+ β .
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hence, spinodal decomposition cannot occur. We remark 
that a similar dispersion relation would be obtained for 
the case where the phase separating component exhibits 
electrostatic repulsion. In this case, the Gibbs energy in 
Eq. 2 would need to be complemented by a term describ-
ing Coulomb interactions. The strength of this repulsion 
contribution has a similar effect on the dispersion rela-
tion as the dissociation constant in the present case.

In our stability analysis in Fig. 1a, b, we have given the 
initial concentrations cA,0 and cB,0 of components A and 
B (and φ = 0 ) and assumed a rapid establishment of reac-
tion equilibrium according to Eq. 12. The change of the 
dispersion relation with increasing dissociation constant 
is shown in Fig. 1a. The growth velocity ωmax diminishes 
with increasing dissociation constant, whereas the corre-
sponding wavelength does not change. The impact of the 
initial concentration cB,0 (phosphate ions) on the disper-
sion relation, while fixing the other parameters, is shown 
in Fig. 1b. The curves demonstrate that a sufficiently high 
phosphate concentration is necessary to enable spinodal 
decomposition by reaching a wave vector region with 
ω(q) > 0 . The wavelength of the fastest growing Fourier 
mode decreases slightly with increasing initial concen-
tration cB,0 . The present stability analysis clearly charac-
terizes only the very early stage of phase separation. The 
subsequent nonlinear concentration evolution has to be 
computed numerically. However, this analysis is of great 
benefit for finding out those parameter sets, where the 
formation of regular stationary phase patterns can be 
expected.

Numerical analysis of phase separation

1D simulations
To illustrate characteristic features of the nonlinear phase 
separation process, we first present results of numeri-
cal calculations in one dimension. As initial condition, 
the concentrations cA,0 and cB,0 of components A and 
B with small fluctuations of the order of 1 % are given. 
These initial fluctuations quickly decay due to diffusion 
processes. For component C, a very small initial concen-
tration φ = 0.002 is given. As a boundary condition, we 
chose periodic boundary conditions. Figure  2 shows an 
example of the concentration evolution at two times. At 
an intermediate time, several peaks appear. Subsequently, 
many peaks vanish and a state with two remaining peaks 
is achieved. Compared to Fig. 2b, the peaks further move 
up to a stationary state with a peak spacing of 40, i.e. half 
the cell size of L = 80 . Doubling the cell size to L = 160 
leads to a stationary pattern with five equidistant peaks 
with a spacing of 32 (cf. Supplementary Material). Fur-
ther cell doubling results in nine peaks with a spacing of 
35.56. Clearly, the periodicity length of the arising pattern 
is affected by the simulation cell size, which should be 
large compared to characteristic lengths of the pattern.

For demonstration purposes, comparatively small 
diffusion coefficients were chosen in the example in 
Fig.  2. It was further assumed that the diffusion coef-
ficient of component B (phosphate ions) is considerably 
larger than that of component A (organic molecules). To 
ensure that the diffusion processes are fast compared to 
the phase separation process, in the following examples 
the diffusion coefficients DA = 100 and DB = 1000 for 
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(b)
(a) β

0.00
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Fig. 1 Dispersion relation ω(q) a for different values of β = 0, 0.05, 0.1, 0.2 and cB,0 = 0.25 revealing the strong impact of the dissociation constant 
on the spinodal decomposition; b for different initial concentration of component B (phosphate ions) cB,0 = 0.1, 0.15, 0.2, 0.4 and β = 0.1 . Shared 
parameters: DA = 100 , DB = 1000 , α = 10 , cA,0 = 0.25
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components A and B were chosen. (See the Supplemen-
tary Material for other simulations using smaller values 
of the diffusion coefficients. As a tendency, we found that 
for smaller diffusion coefficients the reaction and disso-
ciation rates have also to be diminished to obtain regular 
patterns.) Furthermore, the reaction constant α = 10 was 
kept fixed. The strong impact of the dissociation constant 
β on the concentration evolution is shown in Fig. 3. For 
a dissociation constant of β = 0.15 , a regular arrange-
ment of concentration peaks is quickly established, 
whereas without dissociation ( β = 0 ), a coarsening of 

phase regions occurred. The concentration profile for 
β = 0.15 in Fig. 3 is obviously stationary, since it did not 
change within our calculation time of up to t = 106 . Note 
also the smaller difference between maximum and mini-
mum concentration values in Fig.  3a, compared to the 
case without dissociation. The wavelength of the regular 
concentration profile for β = 0.15 in Fig. 3 roughly cor-
responds to the wave vector at the maximum of the dis-
persion relation in Fig.  1. The present one-dimensional 
calculations reflect already important tendencies on how 
the choice of model parameters may affect the phase sep-
aration process in higher dimension.

2D simulations
In previous modelling studies on the structure develop-
ment in diatoms, two-dimensional (2D) models of pat-
tern formation were considered. Besides computational 
simplicity, the restriction to two dimensions is related to 
the flat geometry of the silica deposition vesicle. Accord-
ingly, we present in the following results of 2D simula-
tions for the concentration evolution of component C. As 
boundary condition for the simulations in Fig. 4, we used 
periodic boundary conditions in all directions. Depend-
ing on the parameter choice, irregular patterns showing 
strong coarsening of phase regions (Fig. 4) are obtained, 
or very regular stationary patterns (Fig.  5). The regular 
pattern shows a hexagonal arrangement of aggregates of 
organic molecules of equal size. The orientation of this 
hexagonal array is to a certain degree accidental due to 
the random fluctuations of the initial concentration of 
components A and B. Further, as a finite size effect of our 
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Fig. 2 1D concentration profiles: Two snapshots of concentration profiles of components A, B, and C at two times. Parameters: DA = 2 , DB = 10 , 
α = 10 , cA,0 = cB,0 = 0.15 , β = 0.02
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Fig. 3 1D concentration profiles of component C for different 
dissociation constants β = 0.15 and β = 0 . Without dissociation 
considerable coarsening of phase regions occurred (initial 
concentrations cA,0 = cB,0 = 0.35)
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limited simulation cell, this pattern is influenced by the 
used periodic boundary conditions. By adding monosi-
licic acid to a solution with organic aggregates in in vitro 
experiments, silification of those aggregates was observed 
[15]. On the other hand, by adding a sol of silica nanopar-
ticles, silica could form around the organic aggregates [2]. 
Corresponding to the regular aggregates in Fig. 5, a hex-
agonal pore structure would be obtained.

Figure  6 shows patterns of organic aggregates for 
higher initial concentrations of components A and B. The 
arising stationary patterns strongly depend on the value 
of the dissociation constant. Typically, a dense network 
of organic-rich phase of component C with circular pores 
of organic-poor phase develops. The size of the pores 
increases with decreasing dissociation constant. Interest-
ingly, at certain values of the dissociation constant, also 
lamellar (labyrinth-like) phase patterns were obtained. 

(a) (b) (c)

Fig. 4 2D concentration profile snapshots of component C for a parameter set where permanent coarsening of phase regions occurred 
cA,0 = cB,0 = 0.2 , β = 10−4 . For animation see Additional file 1

Fig. 5 Stable 2D concentration profile: Stationary regular pattern of 
concentration C ( cA,0 = cB,0 = 0.2 , β = 0.1 ). Note the stability of the 
pattern up to a very large computation time

Fig. 6 Stationary 2D concentration profiles of component C at higher initial concentrations of A and B for different values of β . Parameters: a 
cA,0 = cB,0 = 0.4 , t = 274259 , b cA,0 = cB,0 = 0.4 , t = 535837 , c) cA,0 = cB,0 = 0.5 , t = 43385 . For animation of case b) see Additional file 1
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It is remarkable that those stripes are stationary despite 
their irregular structure.

Confinement effects. The phase patterns shown in 
Figs. 4, 5 and 6 were calculated by using periodic bound-
ary conditions in order to minimize artificial finite size 
effects owing to the limited size of the simulation cell. In 
diatoms, the aggregation of organic material takes place 
within the SDV (the same may hold in the case of artifi-
cially built SDVs). This confinement is rather large com-
pared to the characteristic lengths of the observed pore 
structures of valves of diatoms. Thus, it seems justified 
to consider only a small part of the SDV and to assume 
periodic boundary conditions in our above calcula-
tions. However, in the case of the observed hierarchical 
pore structure in diatom C. wailesii [14], pre-existing 
large pores represent confinements for the formation of 
smaller pores. Pattern formation in pre-existing pores 
was subject of investigations in [12, 13], which were 
based on a reaction–diffusion mechanism. We also per-
formed simulations within a confined geometry based, 
however, on the phase separation mechanism. The pat-
terns shown in Fig.  7 are computed within a circular 

simulation cell supposing zero flux boundary conditions. 
The obtained patterns are stationary within the simu-
lation time of typically t = 105 . Strictly, it cannot be 
excluded that some changes occur at very long time. 
Most of the patterns show a high regularity, depending 
on the initial concentration of components A and B and 
on the dissociation constant. If the size of the charac-
teristic features of the patterns is small compared to the 
simulation cell, the patterns are only little influenced by 
the confinement. With decreasing dissociation constant, 
the feature size increases and the evolving patterns are 
strongly influenced by the circular confinement. Impor-
tantly, the formation of hexagonal arrays of small aggre-
gates is observed within large pores as it was suggested 
by Sumper in [14]. At higher initial concentrations of 
components A and B, organic-rich networks with circu-
lar pores or lamellar structures develop. Simulations with 
a φ-dependent mobility have also been carried out and 
are shown in Fig. S6 of the Supplementary Material.

Boundary interaction. A recent experimental study 
[33] focused on the influence of the boundary of the SDV 
on the aggregation of biomolecules. In particular, the 

Fig. 7 Circular stationary patterns: Concentration profiles of component C within a circular boundary for different dissociation constants (columns, 
β = 0.15, 0.1, 0.01, 0.001 ) and initial concentrations of components A and B ( cA,0 = cB,0 = 0.2, 0.25, 0.4, 0.5 ). The radius of the simulation cell was 
r = 40 . Bright regions correspond to the organic-rich phase
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interaction of long-chain polyamines with lipid mem-
branes was analyzed. Motivated by these investigations, 
we included in our modeling an attractive interaction of 
component A (organic molecules) with the boundary of 
the confinement. A corresponding simulation is shown 
in Fig.  8. To mimic the interaction with the boundary 
(left boundary in Fig. 8), we supposed an additional field 
h(x) = h0 exp(−x/ξ) , acting on molecules A, and added 
a corresponding DAcAdh(x)/dx term on the right–hand 
side of the evolution equation for component A in Eq. 9. 
The field rapidly decays with increasing distance from the 
boundary. As a consequence of the enrichment of com-
ponent A at the attracting boundary, a lamellar phase 
structure parallel to the boundary develops initially. Sub-
sequently, the lamellae decompose into circular aggre-
gates, forming a hexagonal array with defined orientation.

3D simulations
Microscopic images of the three-dimensional valve 
structures show great differences between the proximal 
and distal sides of diatom valves. Thus, it is desirable to 
analyze the valve formation also by 3D computer simula-
tions. In the following analysis, we have chosen a coor-
dinate system with z-direction perpendicular to the flat 
SDV. Periodic boundary conditions were supposed only 
in x- and y-directions, whereas at the boundaries in 
z-direction the normal diffusion flux for all components 
is required to vanish. Figure  9 shows examples for the 
establishment of stationary aggregates of component C. 
The aggregates are represented by surface plots of the 
concentration as well as by plots of the iso-concentra-
tion surface. The chosen kinetic parameters in Fig.9a, b 
are equal, only the thickness of the simulation cell differs 
slightly. For the example in Fig. 9a cylindrical aggregates 
developed, whereas in Fig.  9b half-sphere aggregates 

at the bottom and top face of the simulation cell were 
formed.

Conclusions
Following the hypothesis that the formation of silica 
structures of diatoms may be guided by an organic tem-
plate, we studied the formation of aggregates of organic 
molecules by means of a phase separation model. This 
general hypothesis has received some additional sup-
port from extensive in  vitro experiments, which have 
demonstrated the role of the organic components (in 
conjunction with the presence of multivalent anions) in 
catalyzing silica precipitation. In contrast to previous 
work [10], we did not assume an additional pre-pattern-
ing field influencing the formation of highly regular pat-
terns of the organic component. Instead, to avoid the 
permanent phase coarsening in common phase separa-
tion and to obtain patterns of high regularity, we coupled 
the phase separation process with a chemical reaction 
[18], where the phase separating component could dis-
sociate into two components. Owing to this dissociation, 
regular stationary patterns of aggregated organic mol-
ecules could be obtained. We have demonstrated that 
the geometric features of those patterns crucially depend 
on the degree of dissociation and on the initial concen-
trations of the components. To a certain degree, the 
impact of the dissociation on the phase pattern formation 
effectively resembles a repulsion between the organic 
aggregates.

Finally, we emphasize that our computer simula-
tions were performed within the framework of a very 
strongly simplified description of the reaction–diffu-
sion processes. To further substantiate our predictions, 

(a) (b) (c) (d)

Fig. 8 Attractive interaction: Snapshots of aggregation of component C (time t = 140, 200, 230, 500 ) influenced by an attractive interaction of 
component A with the left boundary, which leads to the formation of an oriented hexagonal pattern. Parameters: h0 = −0.01 , cA,0 = cB,0 = 0.2 , 
β = 0.1 , ξ = 1
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a more sophisticated modeling is clearly needed. Espe-
cially, this concerns a more precise description of the 
nonlinear diffusion and phase separation of all the 
components by means of a more appropriate func-
tional form of the Gibbs free energy and by including 
a concentration dependence of the diffusion coeffi-
cients. This is particularly important for larger polymer 
volume fractions and dissociation rates. Our current 
approach represents, thus, a first step aiming at dem-
onstrating the potential of models combining phase 
separation and reaction–diffusion processes for eluci-
dating the hypothesized basic mechanisms in diatoms 
morphogenesis. Moreover, additional experimental 
information concerning the in  vivo conditions in the 

SDV will be needed to further fine tune our model 
towards more realistic conditions. Still, our approach 
can be of interest for studies aiming at inducing struc-
ture formation under in  vitro conditions. The present 
simulations can also serve as a starting point for the 
modeling of silica structures, where the arrangement 
of organic aggregates provides a template for silica for-
mation after addition of monosilicic acid to the system. 
We also hope to benefit from atomistic information 
obtained e.g. from Molecular Dyanmics simulations of 
the organic–inorganic interface properties in order to 
further improve the quality of the continuum model.
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